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Abstract. We consider the problem of planning paths of multiple agents
in a dynamic but predictable environment. Typical scenarios are evacu-
ation, reconfiguration, and containment. We present a novel representa-
tion of abstract path-planning problems in which the stationary environ-
ment is explicitly coded as a graph (called the arena) while the dynamic
environment is treated as just another agent. The complexity of plan-
ning using this representation is pspace-complete. The arena complexity
(i.e., the complexity of the planning problem in which the graph is the
only input, in particular, the number of agents is fixed) is np-hard. Thus,
we provide structural restrictions that put the arena complexity of the
planning problem into ptime (for any fixed number of agents). The im-
portance of our work is that these structural conditions (and hence the
complexity results) do not depend on graph-theoretic properties of the
arena (such as clique- or tree-width), but rather on the abilities of the
agents.

1 Introduction

The path-planning problem is to find collision-free paths for mobile agents in an
environment that may contain obstacles [20, 32, 10, 27]. Obstacles, which may
not always be stationary, are known if their size, locations, motions, etc. are
fixed ahead of planning.

For example, consider a building consisting of rooms, corridors between cer-
tain pairs of rooms, and a set of exits. Initially, a fixed number of people are
positioned in various rooms, and a flood begins in one of the rooms. At each
time step every agent can either stay where it is or move through a corridor to
an adjacent room. Suppose the flood spreads radially (i.e., at each time step it
reaches all adjacent rooms that are accessible via a corridor). The path planning
problem is to exhibit a sequence of actions for the agents that ensures they can
reach an exit before the flood traps them.

Other applications are to space exploration, warehouse management, intelli-
gent transportation, assembly or disassembly, and computer games (see [16] and
the references therein).
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The AI literature on planning has established that planning is intractable,
e.g., propositional STRIPS planning is pspace-complete [2]. To gain deeper
insight into what makes planning hard, one must study structural properties of
the problem, e.g., [19]:

For many discrete planning problems that we would like a computer to
solve, the state space is enormous (e.g., 10100 states). Therefore, sub-
stantial effort has been invested in constructing implicit encodings of
problems in hopes that the entire state space does not have to be ex-
plored by the algorithm to solve the problem.

In this paper we propose an implicit representation (“encoding” in the lan-
guage above) of path-planning problems of mobile agents in which obstacles are
known, and agents should collaborate, rather than compete, to achieve some
goal. Know but dynamic environments, such as the flood in the example above,
are treated as agents.

Since our representation is exponentially compact, the associated decision
problem is pspace-complete (Theorems 1 and 2). This is true even for a fixed
number of agents, i.e., this high space complexity is not the result of the avail-
ability of more and more agents. The restricted path-planning problem assumes
that all the data is fixed in advance, except for the arena which is the input.
We prove that the complexity of the restricted path-planning problem, called
the arena complexity in the abstract, may be np-hard (Proposition 1); it is not
known if it can be pspace-hard. Thus, we describe cases that are solvable in
ptime in which the agent behaviour is restricted (Theorem 3): every agent is
either monotone or of bounded-extent. Informally, an agent is monotone if its
set of positions can only expand over time (or, only shrink over time). A typical
example is the flood: once a room is flooded it stays flooded. An agent is of
bounded-extent if it can only occupy a set of positions of bounded size (where
the bound does not depend on the size of the arena). A typical example are peo-
ple: each person in the building can occupy only one room at a time, no matter
how large the room is.

1.1 Related Work

Much work in robotics focuses on geometric reasoning, e.g., [32, 30, 18]. Although
our environment is discrete (i.e., a finite graph), it may represent a discretisation
of the geometric structure of the environment, e.g., a vertex may represent an
area not occupied by any of the obstacles. For a discussion of the subtle issues
involved in such a translation, see for instance [16].

Standard ways to deal with the fact that planning has, in general, high com-
putational complexity, is to use abstractions and heuristics, see for instance a
recent survey on path planning [27]. In contrast, in this paper we isolate com-
putationally tractable but interesting path-planning scenarious.

Standard ways to encode planning problems are logic-based: e.g., the situa-
tion calculus is a first-order logic in which the main objects are finite sequences of



actions; and in the set-theoretical representation (such as STRIPS or the multi-
agent extension MA-STRIPS [1]) every state is an evaluation of a fixed number
of Boolean variables [10]. In contrast, our representation is graph-theoretic and
represents the positions of the agents on a graph. Although our planning prob-
lems can be expressed in these logical formalisms, this would hide the graphical
nature of the problem, see Section 5.

Our representation is related to multi-robot path-planning problems and puz-
zles [15, 23, 8, 28, 26]. In [15, 28, 26] the goal is to rearrange a group of robots in
a given graph, without colliding with each other or with obstacles. The non-
optimal version of that problem is in ptime [15]. We can encode the variation in
which more than one agent may move at a time [28], see Example 2. The motion-
planning problems and puzzles of [12, 8] are pspace-complete. We use one such
puzzle to prove a pspace-hard lower bound on our path-planning problems, see
Theorem 2.

Monotonicity has been used to get ptime algorithms in the setting of propo-
sitional temporal planning [4]. That work studies a propositional representation
of planning problems in which the fluents (i.e., literals) are required to be mono-
tone, e.g., once removed a fluent can never be added in any plan of the plan-
ning problem. In contrast, the natural translation of our representation into the
propositional planning encoding does not preserve monotonicity, see Section 4.

Most of the planning literature, including this paper, focuses on attainment
goals of the form “a target configuration can be reached from some initial con-
figuration” [19]. In particular then, we can also model goals of the form “every
agent eventually reaches its target vertex in a collision-free way”.

Our formalisation and results are inspired by formal methods. Other work
in planning with the similar inspirations are an automata-theoretic approach
to planning [5], and planning as model checking [24, 11, 31, 25, 21, 13]. These
papers also supply centralised planning algorithms, however their representation
is based on transition-systems, and hence is not compact, as ours is.

2 Representation of the Path-Planning Problem

We describe how we represent the path-planning problem. Informally, all moving
entities (people, floods, fires) are considered to be agents. Agents operate in a
finite graph (V,E). At any given time, an agent can occupy a subset V , called its
position (e.g., a person occupies a single vertex, and a flood may occupy more
than one vertex). One may specify the legal positions L of the agents, e.g., that
agents cannot occupy overlapping vertices. An agent’s movements are governed
by its mobility relation ∆ that relates its current position to its next possible
position (the fact that ∆ is a relation, rather than a function, models that moves
may be nondeterministic). In Section 3 we will discuss how to specify L and ∆
(in particular these objects can be defined algorithmically, or by formulas, e.g.,
of first-order logic).

Formally, let k ∈ N (representing the number the agents). An arena is a finite
directed graph A = (V,E). Subsets of V are called positions. A (k-)configuration



(over A) is an expansion of A by k many positions, i.e., 〈V,E, P1, · · · , Pk〉 where
each Pi ⊆ V is called the position of agent i (in the configuration). Note that an
agent can be in more than one vertex, e.g., a flood. A mobility relation (over A)
is a subset ∆ of 2V × 2V such that (X,Y ) ∈ ∆ implies Y ⊆ X ∪ E(X), where
E(X) := {v ∈ V | ∃u ∈ X.(u, v) ∈ E}. The idea is that (X,Y ) ∈ ∆ means that
a player can move from position X to position Y but only along edges.

A (path-)planning domain is a tuple D = 〈A,L, ∆1, · · · , ∆k〉 where A =
(V,E) is an arena, L is a set of k-configurations of A, called the legal configu-
rations, and each ∆i is a mobility relation over A. For k-configurations c, d over
A write c ` d to mean that d results from c via simultaneous application of ∆is,
formally: for c = 〈V,E, P1, · · · , Pk〉 and d = 〈V,E,Q1, · · · , Qk〉 define c ` d iff
(Pi, Qi) ∈ ∆i for all i ≤ k. An execution starting in configuration c is a finite
or infinite sequence π of configurations of A such that π1 = c and for all i, a)
πi ∈ L, and b) πi ` πi+1.

A (path) planning instance is a tuple P = 〈D, I,G〉 where I and G are sets of
k-configurations over A called the initial configurations and goal configurations.
An execution π of P is called a solution if π1 ∈ I and there exists j such that
πj ∈ G.

Example 1 (Evacuation). To model the flood example from the introduction
with one person take k = 2, i.e., one agent is a person, and the other agent is
the flood. Consider an initial configuration of the form 〈V,E, {p}, {f}〉, i.e., the
person starts in some vertex s, and the source of the flood is in some vertex f .
The goal configurations are of the form ∪X⊆V 〈V,E, {t}, X〉 for some vertex t.
The mobility of the person relates {v} to all those {w} such that (v, w) ∈ E or
v = w, i.e., the person can move to an adjacent position, or stay where it is.
The mobility of the flood relates X to the single set X ∪ E(X), i.e., the flood
expands radially. Thus a typical configuration in an execution is of the form
〈V,E, {v}, F 〉 for some v ∈ V and F ⊆ V . Finally, to specify that the person
cannot move into a flooded area, define the set of legal configurations L to be
those of the form 〈V,E, {v}, F 〉 such that v 6∈ F .
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Fig. 1. An evolution of a flood scenario. Player P cannot reach the exit E

In Figure 1 we represent a possible evolution of an instance of the Evacuation
scenario. The graph represents three floors of a building, connected by two lifts



located at the sides. Each floor has three connected rooms. Moreover, there is
an exit point E at the basement, that is reachable from the central room of the
first floor. In the initial configuration, the flood is located in the leftmost top
room of the building, while Player P is in the rightmost top. At each step in
time, the flood spreads from flooded rooms to the connected unflooded rooms,
while P moves to some available room. Unfortunately for P, he gets stuck after
three units of time without reaching the exit point. It is not hard to see that, in
case the initial position of P is on a side of the second floor (or anywhere in the
first floor), he can safely reach the exit point.

Example 2 (Reconfiguration). The abstract path-planning problem requires a set
of k mobile robots to re-arrange themselves into a target configuration without
colliding with each other or fixed obstacles [28]. This can be modeled as follows.
There is one initial configuration, say 〈V,E, {v1}, · · · , {vk}〉, and one goal con-
figuration, say 〈V,E, {t1}, · · · , {tk}〉. The mobility relation for each agent is the
same as the mobility relation for the person in the previous example. Define the
set of legal configurations L to be those of the form 〈V,E, {v1}, · · · , {vk}〉 such
that vi 6= vj for i 6= j. This captures the fact that players should not collide.

Example 3 (Containment). Consider a variation of the flooding example in which
the goal of the people is to erect barriers in some of the rooms in order to stop
the flood from reaching a certain vertex (or cover a set of vertices). This can be
modeled by having extra agents that represent barriers. Each barrier is associate
with exactly one agent. When a barrier is placed on an unflooded vertex then
the flood cannot enter that vertex (this can be coded in the legal-configurations).
Agents can carry barriers with them or drop them when they move rooms (this
is also expressed in the legal-configurations).

3 Complexity of the Path-Planning Problem

In order to talk about the decision problem for path-planning, we need a way
to specify how the environment evolves no matter the size of the arena. For
instance, a flood expands radially in any arena. We formalize this as follows.

A mobility operator is a function F that maps an arena A to a mobility relation
F(A) over A. For k ∈ N, a k-configuration operator is a function C that maps
an arena A to a set C(A) of k-configurations over A. Informally, an operator is
tractable if there is an efficient algorithm that computes the relation it induces.
Formally, a mobility operator F is called tractable if there is a polynomial time
algorithm that given an arena A = 〈V,E〉, and a pair (X,Y ) ∈ 2V × 2V , decides
whether (X,Y ) ∈ F(A). Similarly, a configuration operator is tractable if there is
a polynomial time algorithm that, given an arena A = 〈V,E〉 and a configuration
c = 〈V,E, P1, · · · , Pk〉 over A decides whether c ∈ C(A). Note that the operators
in Examples 1 and 2 are tractable.

We assume, for the rest of this paper, that all operators are tractable.



Remark 1. This tractability assumption implies ` is tractable, i.e., there is a
ptime algorithm that given A and k-configurations c, d over A, decides whether
c ` d.

Observe that fixing the following planning data

– k ∈ N,
– mobility operators Fi (for each i ≤ k),
– configuration operators L, I,G, and
– an arena A = 〈V,E〉,

uniquely determines a path-planning domain and a path-planning instance, i.e.,
the planning domain D = 〈A, L(A),F1(A), · · · ,Fk(A)〉 and the planning instance
P = 〈D, I(A),G(A)〉. Call this P the planning instance induced by the given
planning data, or simply the induced planning instance.

Definition 1. The path-planning problem asks, given as input the planning
data k,F1, · · · ,Fk, L, I,G,A, whether the induced path-planning instance has a so-
lution. The restricted path-planning problem fixes k,F1, · · · ,Fk, L, I,G and asks,
given an arena A as input, whether or not the induced path-planning instance
has a solution.

Remark 2. In order to talk about the complexity of this decision problem (and
also of the notion of a tractable operator), we should specify how these objects
are coded. We use any natural encoding. E.g., sets V are identified with sets
of the form {1, 2, · · · , N}; the number of robots k is written in unary; relations
(such as E ⊆ V × V and P ⊆ V ) are coded by listing their elements; and a
tractable operator is coded as the state diagram of a ptime Turing machine (in
Remark 4 we will see how to express operators as formulas rather than machines).
The size of the planning data is the number of bits of its encoding. Note that
the size of an arena A = 〈V,E〉 is O(|V |2), and the size of a k-configuration over
A is O(|V |2 + |V |k).

Theorem 1. The path-planning problem can be solved in pspace, or time ex-
ponential in |V | and k.

Proof. The number of configurations is O(2|V |k), and thus the brute force al-
gorithm takes exptime in |V | and k. However, since each configuration can be
written in polynomial space (in the size of V and k), one can search the reachable
configuration space using a nondeterministic polynomial-space algorithm. That
is, the algorithm stores the current configuration c on its tape, nondeterministi-
cally guesses (in ptime) a legal configuration d (and writes it on its tape), and
then verifies that c ` d (by Remark 1 the ` relation is computable in ptime).
The algorithm begins by guessing (in ptime) a configuration in I(A) and pro-
ceeds until the current configuration is in G(A). This algorithm halts if and only
if the induced planning problem has a solution. Now use the fact that npspace
= pspace. ut



Corollary 1. For every k,F1, · · · ,Fk, L, I,G the restricted path-planning prob-
lem can be solved in pspace, or time exponential in |V |.

Since there are motion-planning problems that are pspace-hard (e.g., [12,
8]), the path-planning problem is also pspace-hard. For instance, generalised
rush-hour is a generalisation of a children’s puzzle in which the objective is to
slide cars in a grid-environment in order for a target car to reach a certain exit
co-ordinate. Solving generalised rush-hour is pspace-complete [8].

Theorem 2. The path-planning problem is pspace-hard.

Proof. We describe a reduction from generalised rush-hour (GRH) to path-
planning problems. Note that although [8] prove pspace-hardness when the
GRH instances consist of cars (1 × 2 vehicles) and trucks (1 × 3 vehicles), it
is known that using only cars suffice [29]. An instance of GRH consists of the
width w and height h of the grid, a number n of cars, and for each car an orien-
tation (horizontal or vertical) and co-ordinates of the head of each car (xi, yi).
We assume that the first car is the designated car, and that it has horizontal
orientation. Each car can only move, forwards or backwards, in the direction of
its orientation. The goal is to move the cars, one at a time, until the head of the
designated car reaches the right-hand-side of the grid.1

The main problem we have to solve is that in GRH one car moves at a time,
while in our path-planning problems agents move concurrently. We solve this
problem by treating the set of all cars as a single agent, i.e., let k = 1. This
introduces the problem that we need to be able to distinguish between different
cars. This is solved by placing each car on a disjoint copy of the grid. That is, a
GRH configuration is encoded by the arena w×h×n grid so that if the head of
the ith car is (currently) at co-ordinate (a, b) then: if the car is horizontal then
this car is coded by the vertices a × b × i and (a + 1) × b × i, and if the car is
vertical then this car is coded by the vertices a× b× i and a× (b+ 1)× i.

More precisely, given an instance of GRH define planning-data as follows.
Let k = 1, let the arena be the w×h×n grid, formally it has V = [w]× [h]× [n]
and E = {((x, y, z), (x′, y′, z′)) : |x − x′| = 1 xor |y − y′| = 1 xor |z − z′| = 1}.
We only describe how the operators map grid arenas of the form a × b × c for
a, b, c ∈ N (on other arenas the maps may be arbitrary). The legal configuration
operator L maps the grid arena a × b × c to the set of configurations in which
there is exactly one car on each of the c-levels; the G operator maps the grid
arena a × b × c to the set of legal configurations in which the head of the first
car has y-coordinate equal to b; the I operator maps the grid arena w×h×n to
the configuration encoding the initial layout of the GRH; the mobility operator
maps the grid arena a× b× c to the relation over V = [a]× [b]× [c] that relates
X to Y if the only difference between X and Y is that for some co-ordinate
i ≤ c, every element in X ∩ [a] × [b] × [i] moves one coordinate forwards in the

1 The original definition of GRH unnecessarily allows any of the cars to be the target,
the exit to be anywhere on the perimeter, and the target car to be horizontal or
vertical [8].



direction of the orientation or every element moves one co-ordinate backwards
in the direction of orientation. This completes the description of the reduction.
It is not hard to see that the GRH has a solution if and only if the planning
instance induced by the constructed data has a solution. ut

Fig. 2. A representation of the encoding for Generalised Rush Hour (GRH) to path-
planning problem. On the left, an instance of GRH. The white rectangle represents
the position of the designated car, the black rectangles represent the position of the
other cars, the dashed square represents the exit point. On the right, the path-planning
representation.

It is not clear if there exists a restricted path-planning problem that is
pspace-hard. We remark that the proof just given does not work since a re-
duction would have to map an instance of generalised rush-hour (which includes
the initial layout) to an arena A (which does not include the initial configura-
tion). We do know the following:

Proposition 1. There exists k,F1, · · · ,Fk, L, I,G such that the restricted path-
planning problem is np-hard.

Proof. We reduce from the np-complete problem that asks if a given vertex
colouring of a graph by 3 colours is a proper colouring, i.e., that no two adjacent
vertices have the same colour. The idea is to use k = 3 agents, the initial con-
figurations are arbitrary colourings (i.e., I maps A to 〈A, P1, P2, P3〉 such that
Pi ∩ Pj = ∅ for i 6= j), the mobility relations map A to the identity relation
on 2V (i.e., agents do not move), every configuration is a legal configuration
(i.e., L maps A to the set of all 3-configurations), and the goal configurations
are proper colourings (i.e., G maps A to 〈A, P1, P2, P3〉 such that (x, y) ∈ E and
x ∈ Pi, y ∈ Pj implies i 6= j). It is immediate that the reduction that maps
A to the data k = 3,F1,F2,F3, L, I,G is computable in ptime, and that A is
3-colourable if and only if the constructed restricted path-planning problem has
a solution. ut

We now identify a general subclass of path-planning problems that are solv-
able in ptime. We use the following definitions.



Definition 2. A mobility relation ∆ is called:

– increasing if (X,Y ) ∈ ∆⇒ X ⊆ Y ,
– decreasing if (X,Y ) ∈ ∆⇒ Y ⊆ X,
– monotone if it is increasing or decreasing,
– size-decreasing if (X,Y ) ∈ ∆⇒ |X| ≥ |Y |.

A mobility operator F is called increasing (resp. decreasing, monotone, size-
preserving) if every mobility relation F(A) is increasing (resp. decreasing, mono-
tone, size-preserving).

A configuration operator C is called size-bounded if there is a constant B ∈ N
such that for every arena A, for every i ≤ k, the cardinality of Pi in every
configuration in C(A) is at most B.

Note that in Examples 1 and 2, the mobility operators of the players are
size-preserving, the mobility operator of the flood is increasing, and the initial-
configuration operators are size-bounded (for all the agents, including, although
we don’t need this fact, the flood).

The following theorem should be contrasted with the fact that Theorem 1
implies that the time-complexity of restricted path-planning problems is expo-
nential in |V |.

Theorem 3. Fix B ∈ N, and consider the planning problem in which one re-
stricts the input 〈k, L, I,G,F1, · · · ,Fk〉 so that I is size-bounded (by B), and each
mobility operator Fi is monotone or size-decreasing. The time complexity of the
restricted planning problem is polynomial in |V |.

Proof. The number N of reachable configurations is bounded above by a poly-
nomial in |V |. Indeed: N ≤

∏
i≤kmi|V |ni where mi = 1, ni = 1 if the mobility

operator for agent i is monotone, and mi = 2, ni = B if the mobility operator for
agent i is size-preserving (since the number of subsets of V of size at most B is
bounded above by 2|V |B). In particular, the product is |V |O(k), i.e., polynomial
in |V | and exponential in k. Now, since the successor configuration relation ` is
computable in ptime (see Remark 1) we can build the reachable configuration
space in ptime. Since the initial-configuration and goal-configuration operators
are tractable, we can compute the set of initial configurations and the set of
goal configurations in ptime. Now we test if there is a path from some initial
configuration to some goal configuration, which can be done in time quadratic
in N . ut

Remark 3. Thus, the planning instances from Examples 1 and 2 are solvable
in ptime. The algorithm in the proof of Theorem 3 shows that Example 1 is
solvable in time O(|V |2). With k people and one flood the algorithm runs in
time O(|V |k+1).

Remark 4. The reader who prefers logical specification languages (i.e., fol) to
computational ones (i.e., Turing Machines) may express their operators as formu-
las. Indeed, since the program-complexity of fol (i.e., the complexity of model-
checking fol on finite structures in which the formula is fixed and the structure
varies) is in ptime, deduce that every fol-definable operator is tractable.



Informally, the descriptions of the operators in Examples 1 and 2 can be
expressed as formulas of fol in appropriate signatures.

More precisely, fix unary predicate symbols P1, · · · , Pk, A,B and a binary
predicate symbol E (we use standard notation, e.g., [7]). We assume we have
symbols for equality and set containment with their usual interpretations. A
mobility operator F is fol-definable if there is a first-order formula φ in the sig-
nature S = (E,A,B), such that for every S-structure M = (VM, EM, AM, BM)
we have that M |= φ if and only if (AM, BM) ∈ F((VM, EM)). For instance, the
mobility operator for the flood in Example 1 is definable using a fol-formula that
states that A and B are singletons, say A = {a}, B = {b}, and that (a, b) ∈ E,
e.g.,

∃x ∈ A.∃y ∈ B.∀z.(z ∈ A→ x = z) ∧ (z ∈ B → y = z) ∧ (x, y) ∈ E.

Similarly, a configuration operator C is fol-definable if there is a first-order
formula φ in the signature (E,P1, · · · , Pk) such that for every S-structure M =
(VM, EM, PM

1 , · · · , PM
k ) we have that M |= φ if and only if M ∈ C((VM, EM)).

For instance, a simple variation of the legal configurations in Example 2 is de-
finable by the fol-formula

∧
i 6=j ¬∃x.x ∈ Pi ∧ x ∈ Pj .

4 Comparison with other representations

The goal of this section is to analyse the translations of the abstract path-
planning problems considered in this paper into standard representations of
planning problems, i.e., the set-theoretical representation and the classical rep-
resentation [10]. We illustrate by encoding the flood problem of Example 1.

A planning problem in the set-theoretical representation is a tuple S =
〈P,A, I,G〉 where:

– P is a finite set of atoms,
– ι ⊂ P is the initial state,
– G ⊂ P is the set of goal propositions,
– A is a set of actions, each action a is a tuple 〈pre+(a), pre−(a), add(a), del(a)〉

of subsets of P .

A state is a subset of P . A plan is any sequence (possibly empty sequence
〈〉) of actions π = 〈a1, a2, · · · , aN 〉. The state a(s) produced by applying action
a to state s is defined as follows: if pre+(a) ⊆ s and pre−(a) ∩ s = ∅, then
s′ := (s∪add(a))\del(a), and otherwise s′ := s. The state produced by applying
a plan π to a state s is defined inductively: 〈〉 (s) := s and 〈π, a〉 (s) := a(π.s).
A plan π is a solution if G ⊆ π(ι).

For simplicity of exposition we now encode the flood scenario of Example
1 into the set-theoretical representation. Let 〈V,E〉 be the underlying graph,
q, r ∈ V be the starting positions of the person and the flood, respectively,
and t ∈ V the exit. Every vertex v of the graph is associated with two atoms
pv, fv. The meaning of pv is that the person currently occupies vertex v, and the



meaning of fv is that vertex v is flooded. The initial state is ι = {pq, fr}. The
goal G is the set {tv}. For every triple 〈v, w, F 〉 ∈ E × 2V with v, w 6∈ F , there
is an action a defined as follows:

– pre+(a) = {pv} ∪ {fz : z ∈ F} (if the person is at v and F is flooded...),

– pre−(a) = {fz : z 6∈ F} (and nowhere else is flooded...),

– rem(a) = {pv} (then remove the person from v...),

– add(a) = {pw} ∪ {fz : ∃x ∈ F.(x, z) ∈ E} (and place the person at w and
expand theflood).

Then the person can escape the flood if and only if the planning problem S

has a solution.

The translation into the classical representation (i.e., states are ground lit-
erals in a first-order relational signature) is similar. In brief, there is a constant
v for each vertex, constants p and f for the agents, a relation at(x, y) that says
that agent x occupies vertex y, and for each triple (v, w, F ) ∈ E × 2V there is
an action with precondition {at(p, v)} ∪ {at(f, z) : z ∈ F} ∪ {at(f, z) : z 6∈ F}
and effects {at(p, w),¬at(p, v)} ∪ {at(f, z) : z ∈ E(F )}.

We now present a simple analysis. First, the size of both of the representations
is exponential in |V |. In contrast, the size of the representation in Example 1 is
polynomial in |V |. Second, since the actions of the agents are concurrent, none
of the actions are monotone, e.g., it is note the case that once a tuple is removed
from at (or a variable in the set-theoretic representation is removed) it is not
added later. In contrast, our representation neatly separates the abilities of the
multiple agents (i.e., some are monotone, others are not) even though the agents
behave concurrently. Third, consider the interaction graph for the set-theoretic
representation [3]: its vertices are the atoms, and there is an edge from atom x to
atom y if there is some action a such that x ∈ pre+(a)∪pre−(a)∪rem(a)∪add(a)
and y ∈ rem(a) ∪ add(a). The main result in [3] implies that if there is no
bound on the size of the strong connected components of the interaction graph
then the planning problem (i.e., the existence problem) is not in ptime unless
an established complexity-theoretic assumption fails. Note that the arena A =
〈V,E〉 embeds in the interaction graph. Thus there is no bound on the size of
the strongly connected components of the interaction graphs, even in the flood
example. In contrast, since our framework is tailored for path-planning problems
(and not general planning problems), we were able to exhibit ptime algorithms
for such path-planning problems on arbitrary arenas (Theorem 3).

5 Summary and Future Work

We exhibited a natural representation of path-planning problems in which the
arena and the positions of the agents in the arena are coded in a natural graph-
theoretic way, rather than as an evaluation of Boolean propositions (as in, e.g.,
the set-theoretical representation). Our formalism can represent static environ-
ments (e.g., fixed obstacles are coded by the lack of an edge in the graph) and



dynamic but predictable environments (e.g., flooding). We gave a pspace algo-
rithm for solving the planning problem in these settings, which is also solvable
in time exponential in the number of robots k and the size of the arena |V |.

By restricting the abilities of the agents (to be monotone or size-preserving),
we showed that the planning problem can be solved in time polynomial in the
size of the arena, i.e., for a fixed number of agents k but a varying arena, these
restricted planning problems are ptime in the size of the arena |V |. The same
ideas can also be used to get ptime algorithms for b-bounded piecewise monotone
mobility relations, e.g., for b = 1 the flood starts spreading, but at some point
in time stops spreading and begins to recede. The reason is that the size of the
configuration space blows up, for each b-bounded piecewise monotone agent, by
a multiplicative factor of |V |b.

The main open question in this work is the exact complexity of restricted
planning-problems, i.e., is there a restricted planning-problem that is pspace-
hard? We know that there is a restricted planning-problem with three agents
that is np-hard (Proposition 1).

This paper opens up many avenues for extending the model and studying
the complexity: optimal planning, e.g., there are costs associated with moving
that need to be minimised [19] — our paper only deals with feasible planning,
i.e., “does there exist a plan”; adversarial agents that are non-deterministic or
probabilistic [14, 17, 6, 9, 22] — our paper only covers, implicitly, deterministic
adversaries, such as the flood; and more expressive goals, such as those express-
ible in temporal logics, [5, 24] or quantitative goals — our paper only deals with
attainment/reachability goals; imperfect information, e.g., one does not know
the exact starting position of the flood, or one does not know the speed of the
flood.
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